OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 4503 Random Signals and Noise Spring 2007

Midterm Exam #2

For all students, choose any four out of five problems. Please specify which four listed below to be graded

> : 1)___; 2)__; 3)__; 4)__;

Name : _____

E-Mail Address:_____

Problem 1:

A random variable X is uniformly distributed on (0, 6). If X is transformed to a new random variable $Y = 2(X - 3)^2 - 4$, find a) the probability density function of Y and b) \overline{Y} .

Problem 2:

Find a value of the constant b so that the function

 $f_{X,Y}(x, y) = bxy^2 \exp(-2xy)u(x-2)u(y-1)$

is a valid joint density function.

Problem 3:

The random variables *X* and *Y* are statistically independent with exponential densities

$$f_X(x) = \alpha e^{-\alpha x} u(x)$$
, and

$$f_{Y}(y) = \beta e^{-\beta y} u(y).$$

Find the probability density function of the random variable $W = \max(X, Y)$.

Problem 4:

Two random variables X and Y are defined by $\overline{X} = 0$, $\overline{Y} = -1$, $\overline{X^2} = 2$, $\overline{Y^2} = 4$ and $R_{XY} = -2$. Wo new random variables U and V are are

$$U = 2X + Y$$
$$V = -X - 3Y$$

Find \overline{U} , \overline{V} , R_{UV} , and σ_{U}^{2} .

<u>Problem 5</u>: Zero-mean Gaussian random variables X_1 , X_2 , and X_3 having a covariance matrix

$$\begin{bmatrix} C_x \end{bmatrix} = \begin{bmatrix} 4 & 2.05 & 1.05 \\ 2.05 & 4 & 2.05 \\ 1.05 & 2.05 & 4 \end{bmatrix}$$

are transformed to new random variables

$$Y_{1} = 5X_{1} + 2X_{2} - X_{3}$$

$$Y_{2} = -X_{1} + 3X_{2} + X_{3}.$$

$$Y_{3} = 2X_{1} - X_{2} + 2X_{3}$$

Find the covariance matrix of Y_1 , Y_2 , and Y_3 .